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Abstract

Vehicle state estimation and path prediction, which usually involve Kalman filter and motion model, are critical tasks
for intelligent driving. In vehicle state estimation, the comparative performance assessment, regarding accuracy
and efliciency, of the unscented Kalman filter (UKF) and the extended Kalman filter (EKF) is rarely discussed.
This paper is devoted to empirically evaluating the performance of UKF and EKF incorporating different motion
models and investigating the models’ properties and the affecting factors in path prediction. Extensive real world
experiments have been carried out and the results show that EKF and UKF have roughly identical accuracy in state
estimation; however, EKF is faster than UKF generally; the fastest filter is about 2-6 times faster than the slowest.
The path prediction experiments reveal that the velocity estimate and the used motion model affect path prediction;
the more realistically the model reflects the vehicle’s driving status, the more reliable its predictions.

1. Introduction

The vehicle’s current and future states, such as position and velocity, are the cornerstone for both
advanced driver assistance systems (ADAS) and autonomous driving (AD) because they enable the
vehicle to understand current and upcoming situations. In order to obtain the state, multiple sensors are
mounted on the vehicle, such as global positioning system (GPS), inertial measurement unit (IMU) and
light detection and ranging (LiDAR). Unfortunately, these sensors inherently suffer from noise, meaning
that the raw sensor data cannot be used directly, in general. The method introduced by Kalman (1960)
is the method most commonly used for addressing such noise. There are two models of Kalman
filter (KF): the process model, describing the system’s temporal evolution; and the observation model,
describing the sensors’ properties. The standard KF is designed for linear systems. When the system
is nonlinear, KF is extended by linearising the nonlinear models; this is the so-called extended KF
(EKF) (Gelb, 1974). In EKF, the nonlinearities are approximated analytically through first-order Taylor
expansion. For decades, EKF has been the dominant state estimator for nonlinear problems. However, it
has two flaws: (1) the linearisation may lead to poor performance and divergence when the nonlinearities
are considerable, because the higher order terms of Taylor expansion are ignored; (2) the derivation of the
Jacobian matrices may be nontrivial in some applications. In contrast with EKF, the unscented KF (UKF)
(Julier et al., 1995) is founded on the intuition that it is easier to approximate a Gaussian distribution
than it is to approximate an arbitrary nonlinear function or transformation (Julier and Uhlmann, 1997).
In UKF, a minimal set of deterministically sampled sigma points is utilised to capture completely the
true mean and covariance of the Gaussian random variables and when propagated through the true
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nonlinearity, captures the posterior mean and covariance, accurate to the third order (Taylor expansion)
for any nonlinearity; in contrast, EKF only achieves first-order accuracy (Wan and Van Der Merwe,
2000).

There are ample studies that compare the performance of EKF and UKF. Lefebvre et al. (2004)
theoretically compared the performance in process and measurement update step of some KFs. In
vehicle localisation, the performances of EKF and UKF are compared experimentally and they were
found to behave similarly in terms of accuracy and consistency (Ndjeng Ndjeng et al., 2009). In vehicle
navigation, the accuracy and computational time of EKF and UKF were evaluated by St-Pierre and
Gingras (2004); it was found that UKF had just a slight improvement in accuracy whereas it cost much
more computational time than EKF. Yang et al. (2017) investigated the performance of EKF and UKF
with different feedback control models and showed the superiority of UKF. In vehicular state estimation,
the performance of EKF and UKEF is rarely discussed, because UKF is seen as a better choice and
sufficient for most current applications where only several vehicles are involved.

Besides the KF form (EKF or UKF), the process model also affects the performance of a filter.
An elaborate process model significantly improves the filter’s performance (Julier and Durrant-Whyte,
2003). In road safety related applications, kinematic models prevail (Leféevre et al., 2014), such as
the constant velocity/acceleration (CV/CA) model and constant turn rate and velocity/acceleration
(CTRV/CTRA) model. A comprehensive comparison and evaluation of these models was carried out
by Schubert et al. (2011, 2008); they concluded that the sophisticated model did not demonstrate better
performance in any case, and the appropriateness of model heavily depended on the application. In the
literature, CTRV and CTRA models are popular choices in various applications (Madhavan et al., 2006;
Polychronopoulos et al., 2007; Lytrivis et al., 2011; Houenou et al., 2013).

The cooperative intelligent transportation system (ITS) has been regarded as the next important step
towards the vision of accident-free driving (Weil3, 2011). The applications involved with cooperative
ITS and vehicular networking are of real-time nature (Karagiannis et al., 2011). For instance, recently
Dynamic Map 2-0 (DM2-0) has been proposed to manage city-scale traffic data to facilitate safe and
comfortable driving (Watanabe et al., 2018). In DM2-0, massive sensor data are uploaded to the server
and that poses a compelling real-time need for the system.

The available studies compared either EKF/UKF or motion models separately, focusing on the
one-sided aspect of accuracy. In their conclusions, only an appropriate KF form or motion model
was recommended. In practice, the best filter is a tradeoff between accuracy and efficiency. In this
paper, the accuracy and efficiency of both EKF and UKEF, incorporating CTRV and CTRA models, are
evaluated extensively. The analyses can guide the reader to make an appropriate filter considering their
specific demands. Moreover, in path prediction, the affecting factors and the models’ properties are also
investigated.

The remainder of this paper is structured as follows. Section 2 presents the methodology of this
paper. In Section 3, the experimental results are discussed in details. Finally, the conclusions are drawn
in Section 4.

2. Methodology for comparative evaluation
2.1. System framework

The system framework of this study is illustrated in Figure 1. In this system, LiDAR, GPS and IMU
are used. Due to the sensor data inherently containing greater or lesser uncertainties, it is not suggested
that the raw sensor measurements should be used directly in application. Especially in path prediction,
the uncertainties will be propagated and accumulated. In application, it is necessary initially to employ
a state estimator to reduce the uncertainties considering real-time sensor data and vehicular motion
model. An accurate vehicular state estimate helps both current and future situation awareness.

To gain awareness of the upcoming situations, path prediction is usually performed in ADAS and
AD applications. In this paper, a future path is defined as a moving trajectory between the current time
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Figure 2. Simulated trajectories of CTRV and CTRA models.
(instant k) and few seconds later. In each instant (..., k—1, k, k+1, ...), a future path is iteratively

predicted by the kinematic model. The obvious advantages of utilising the models to predict path are
feasibility and simplicity. Given an initial state, a path can be generated iteratively in real time, as shown
in Figure 2. Such predicted path has been used in some vital applications, such as collision warning (Tan
and Huang, 2006) and emergency electronic brake lights (Lytrivis et al., 2011). The estimated state and
predicted path are compared with the baseline to assess their relative difference.

2.2. Vehicular motion models

The vehicle movement is governed by physical laws. Therefore the vehicle’s motion can be explicitly
expressed by mathematical equations. In this paper, vehicular motion models, specifically the CTRV and
CTRA models, play the roles of KF’s process model and path predictor. Certainly, more sophisticated
models do exist, e.g., that of Julier and Durrant-Whyte (2003). The reasons these two models are
chosen are: (1) they are sufficient for most ITS applications; (2) more elaborate models may contain
unobservable parameters; (3) they are widely used in intelligent vehicles.
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2.2.1. CTRV model

The CTRV model hypothesises that the vehicle is moving at a constant turn rate and velocity, which
results in a circular trajectory, as shown in Figure 2 (simulated with initial state [0 m, 100 m, O deg,
3-14m/s, —18 deg/s]” and duration 200 ). The state vector of CTRV model at instant k is

x; = [x,9,6,v,0]" (1)

where x, y represent the position; 6 is the heading; v the velocity; w the angular rate. Based on the
hypothesis, the next instant’s state is derived through

Ties1
X1 = Xg + / %o dr @)

173

Consequently, the CTRV model’s state transition equation is
— Vi . Vi . :
X + ALl sin(0y + w T) — -+ sin(6y)
Wi (3

y

Vi — Zk cos(0y + wiT) + Yk cos(6y)

Xk+1 = Wi Wi (3)

6‘k + a)kT
Vi

Wik

where T is the prediction time interval.

2.2.2. CTRA model

Regarding the velocity derivative as constant, the CTRV model is extended to the CTRA model. The
trajectory of this model follows a clothoid, as Figure 2 shows (simulated with initial state [0 m, 100 m,
Odeg, 3-14m/s, 0-11 m/s2, —1-8 deg/s]T and duration 200s). At instant k, the CTRA model’s state
vector is

x; = [x,,6,v,a,0]" 4)

where a denotes the tangential acceleration. Through Equation (2), the model’s state transition equation
is derived as follows.

+ (vi + a;T) sin(0y + wiT) — vy sin(0y) 4 ay[cos(0 + wiT) — cos(0x)] T
Xk

2
Wi a)k

(Vk + akT) COS(Qk + wkT) - Vi COS(Qk) + ag [sin(é’k +wiT) — sin(@k)]
k=

2
Xpsl = Wk Wi 5)

Or + wi T
vi +aiT
Aag
Wi

2.3. KF:s for vehicular state estimation

2.3.1. State space model
The discrete-time nonlinear dynamic system for vehicular state estimation is formed by

Xie1 = F(Xg) + Wy (6)
Vi = H(Xp) + e 7
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where X, denotes the L-dimensional state of the system at instant k+ 1, and y; is the observation. F
and H are the process and observation functions. wy and e are the process and observation noises,
which are assumed as independent zero-mean white Gaussian noise of covariance matrices Qy and Ry.

2.3.2. EKF

EKEF follows the same prediction-correction mechanism as the standard KF. The main difference is that
EKF has to linearise the nonlinear state space models [Equations (6) and (7)] at each iteration through
first-order Taylor expansion around the most recent state estimate, employing the Jacobian matrices in
Equation (8).

oF O0H
Jr = %R:ﬁq Ju = ﬂk:ﬁ;“ 3)
X 0x

where Jr and Jy denote the Jacobian matrices of the process and observation functions (for more
details see Appendix A). EKF is initialised via

R0 = E[xo] Py = E[(Xo — %0)(Xo —%0)"] ©))

Suppose the system state has been estimated at instant k, the state and covariance at next instant are
then predicted through

Kisr = F(Xi) (10)

Py =JrPdl + Q (1n

As long as the new observations are available, the prediction is corrected by

G =P I (P Iy + Ren) ™! (12)
Rir1 = K1 +Grat (Ve — H(Ru)) (13)
Py = (I - Gk+1JH)PZ+1 (14)

where Gy is Kalman gain. The EKF approximates an optimal estimate through Equations (8)—(14),
recursively. The first-order linearisation and the Taylor expansion around the recent estimates (not the
true state) lead to additional error. UKF, which is derivative free, is proposed to overcome the limitations.

2.3.3. UKF
Unlike EKF, UKF copes with the nonlinearities by deterministically sampling around the optimal
estimate Xy. Firstly, 2L + 1 sigma points Xj ;(with the weights W;) are selected through

Xico = Xk

Xk!izﬁk+(\/(L+/l)Pk)i, i=1,...,L

Xk!i=ﬁk—(\/(L+/l)Pk is i=L+1,...,2L

(m) A (©) A 2
W =s—— WM=—+-a +
0 L+ 0 L+ (I-a”+p)

. 1
(m) (c) .
[’[/. = [/[/, = ———— = 1 ..
! ! 2(L+ A1)’ =5

15)

.,2L

where (4/(L + A)Py); is the i-th column of the matrix square root. 1 = a*(L + ) — L is the scaling
parameter; @ determines the spread of the sigma points around X, and is usually set to a positive value not
more than 1; « is the second scaling parameter usually set to 0; 5 is used to incorporate prior knowledge
of the distribution of x; for Gaussian distribution, 8 = 2 is optimal (Wan and Van Der Merwe, 2000). In
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the prediction step, each sigma point is propagated through
Xir1,; = F(Xk,i) (16)

The state and covariance prediction is derived from the weighted mean and covariance of the
transformed sigma points

2L

Ko = > W X 17)
0
2L

Py = Z Wi(C) [Xirri = Kpor ] [ X — R, 17 +Qp (18)
0

In the correction step, the observations are predicted through

Yis1,i = H(Xjs1,1),i=0,...,2L (19)
oL

Yoo = D WY (20)
0

Then the predicted state and covariance are corrected via

Rir1 = X 4Gt (Vs — Yis1) 21
Pt =Py =Gin Py, GZH (22)
where Kalman gain Gy is
Gis = ka+l)’k+1P;ll+l)/k+l (23)
where
2L
Pycver = O W Wir i = Sea (Yo = $]” + R (24)
i=0
2L
meym = Z Wi<6) [Xk+l,i - ﬁZH] [«yk+l,i - 5’2+1]T (25)
i=0

Both UKF and EKF are based on the standard KF framework; they just differ in addressing the nonlinear-
ities: UKF approximates the state probability distribution, while EKF approximates the nonlinear state
space models. Theoretically, UKF outperforms EKF and they have equal computational complexity of
O(L?). However, UKF needs to transform each sigma point through the process and observation functions
at each prediction and update process, which may cost more time for high dimensional problems.

3. Experiments on vehicular state estimation and path prediction
3.1. Experimental setup

The setup of the experiments is described in Figure 3. The experiments were implemented in C++. GPS,
IMU and LiDAR are installed on the Autoware (Kato et al., 2015) platform to provide vehicle state
measurements, including position, heading, velocity, acceleration and angular rate. The measurements
are fused by the four estimators considering the kinematic models to generate vehicle state estimates. In
the experiments, all the combinations of the most popular KF derivatives (EKF and UKF) and motion
models (CTRV and CTRA) are investigated. In both theory and practice, UKF outperforms EKF (Wan
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Figure 4. Relationship of measurement, estimate and prediction.

and Van Der Merwe, 2000; Julier, 2002; Yang et al., 2017); and the CTRA model outperforms other
kinematic models (Schubert et al., 2008). Therefore, in this paper, the estimate (EQ) of the UKF-CTRA
filter is regarded as the baseline with which the other filters’ estimates (E1, E2 and E3) are compared to
find out the relative difference.

The predictors, CTRV and CTRA, generate 3 s-ahead paths using the estimated states and the paths’
reliabilities are checked through comparison with the baseline. The notation of the path indicates the
used state estimate and predictor. For example, EOP2 is generated by predictor2 based on estimate EO.
The relationship of measurement, estimate and prediction is illustrated by Figure 4, where, for the sake
of brevity, only some of them are drawn. The blue point represents the raw position measurement that
inevitably contains noise. The KF is used to reduce the noise. As the figure illustrates, the position
estimates (the triangles) are closer to the real trajectory. In practice, the real trajectory cannot be
completely known but approximated, since the uncertainties cannot be removed completely. Based on
different state estimates, different paths are predicted by the motion models solely and their reliabilities
decrease over time. The efficiency of the estimator is also investigated through the mean computational
time of each iteration.

3.1.1. Sensors of experimental vehicle

The experiments were carried out via the vehicle shown in Figure 5. Several kinds of sensors are
mounted on the vehicle. In the experiments, LiDAR (Velodyne HDL-64ES3), IMU (Xsens MTi-300)
and GNSS (global navigation satellite system) receiver (Trimble NetR9) were used. Only fixed GPS
data were received in the test fields.
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Figure 5. Test vehicle.

Table 1. Standard deviation of process noise.

Parameter Value Description

Wy, Wy 0-10m Position process noise

W 3-16 x 107 rad Heading process noise

Wy 3-16 x 1073 m/s Velocity process noise

Wq 3-16 x 107% m/s? Acceleration process noise
W 3-16 x 10~ rad/s Turn rate process noise

In these experiments, Autoware just generates raw vehicle state measurements within a unified
coordinate system (some sample data, see Appendix B). The LiDAR measurements were generated at
10 Hz, the GPS at 20 Hz (in two drives, GPS worked at 10 Hz) and the IMU 100 Hz. In urban areas, the
measurements of LiDAR and IMU were fused by the estimators; on the highway, GPS and IMU were
used instead. In KF, the prediction process is performed at 100 Hz and the update process is performed
as soon as a new measurement is available. The observation functions are presented in Equation (26),
where the bold subscript x and y respectively indicate the system state and observation vector. As the
equation expresses, all the states are observed directly, except the velocity and acceleration.

;‘ = vy COS Oy a’y‘ = ay cos Oy 26)
Y =Vxsinfy ay = aysinby

Xy=Xxx Oy=0x v

Yy =yx Wy =wx V

3.1.2. Configurations of EKF and UKF

For EKF and UKEF, it is necessary to select the appropriate process and observation noise covariance
matrix Q and R and to start the algorithm with initial Xy and Py. In this paper, Q and R are considered to
be constant. The setting of these parameters follows the approach proposed by Schneider and Georgakis
(2013), and some of them are tuned empirically. Since Q and R are system and sensor dependent, they
should be determined based on the user’s system and sensors. The parameters used in the experiments
are listed in Tables 1 and 2. In the experiments, CTRV and CTRA use identical process noise parameters.
The first aligned observation is assigned to Xy and Py is set by

Py =o’1 27)

In this paper o~ = 10. In addition, the parameters @, 8 and k of UKF are set to 0-1, 2 and 0, respectively.
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Table 2. Standard deviation of observation noise.

Parameter Value Description
€x_lidar> €y_lidar 0-50m Position observation noise of LiDAR
€x_gpss €y_gps 3-00m Position observation noise of GPS
€9 lidar 7-07 x 1073 rad Heading observation noise of LiDAR
€6_gps 4-47 x 107% rad Heading observation noise of GPS
€yx_lidar» €vy_lidar 7-07 x 1072 m/s Velocity observation noise of LiDAR
€vx_gps» Cvy_gps 0-22 m/s Velocity observation noise of GPS
€axs €ay 0-80 m/s? Acceleration observation noise
€w 0-04 rad/s Turn rate observation noise

Driving routes on Nagoya Highway Driving routes in Nagoya University

T T T T T T
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Figure 6. Driving routes of experiments.

3.2. Collected sensor data

Four typical routes in urban and highway scenarios were selected for the experiments presented in this
paper. Figure 6 (left) shows the routes on Nagoya highway (HW) and Figure 6 (right) the routes in the
Nagoya University campus (NU). In both the HW and NU experiments, drives were repeated three and
four times, respectively. The statistics of all these drives are summarised in Tables 3 and 4. The total
length of the driving routes was more than 105km and the total driving time was nearly 2 h. In these
drives, most of the commonest driving manoeuvres were performed: car following, overtaking and lane
change on Nagoya highway; braking, stop, accelerating and turning on the campus of Nagoya University.

3.3. Comparative evaluation of the filters’ performance in vehicular state estimation.

3.3.1. Relative difference

The most popular indicator for estimation accuracy is root-mean-square error (RMSE). In this paper,
the relative difference evaluation was provided, instead of the absolute error evaluation. In the NU and
HW experiments, the state estimates E1, E2 and E3 are respectively compared with the corresponding
baseline EOQ to assess their relative difference. (Both the baselines of NU and HW were generated by
UKF-CTRA, integrating LiDAR-IMU and GPS-IMU respectively. The configurations are presented in
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Table 3. Statistics of each drive at Nagoya University.

Mean(a) Std(a)
Drive Length(m) Duration Mean(v) (m/s)  Std(v) (m/s) (m/s?) (m/s?)
NUI1-1 981-74 2min 44 s 6-1264 2-2486 —0-053812 0-69399
NUI1-2 974-05 2min 50s 5-7021 1-7541 —0-066964 0-49773
NU1-3 992-68 2min 53 s 5-7723 2-0001 0-034385 0-62067
NU1-4 966-11 3min 01 s 5-341 1-8286 -0-074118 0-48275
NU2-1 1,733-3 5min 19s 5-4971 2-0158 0-058261 0-47464
NU2-2 1,727-5 4min 30s 6-4593 2-4218 0-034729 0-58905
NU2-3 1,698-7 5min 26 5-2544 2-2391 0-046688 0-51144
NU2-4 1,746-3 Smin 01 s 5-8214 2-6551 0-046192 0-62631
Total 10,820.38 31min44s - - - -

Table 4. Statistics of each drive on Nagoya highway.

Mean(a) Std(a)
Drive Length(m) Duration Mean(v) (m/s)  Std(v) (m/s) (m/s?) (m/s?)
HWI1-1  13,138.77 10min 42s 20-455 3.2057 —-0-016844 0-22684
HWI1-2  13,124.09 12min 57 ses 16-841 2-5291 -0-07341 0-22356
HWI1-3  13,122.98 12 min 24 s 17-67 2-2747 0-0094033  0-181
HW2-1  19,010.99 16 min 44 s 18-942 2-2481 0-028385 0-2221
HW2-2  17,794.26 15min 35 19-025 2-1233 0-059228 0-22881
HW2-3  19,253.90 17min 42s 18-121 2-428 0-033483 0-257
Total 95,444.98 86 min 04 s - - - -

Section 3.1.2.) The relative RMSE (RRMSE) is formulised as
1 v .
RRMSE(x) = J Z Z (xi — xibaselme)z (28)
i

The mean RRMSEs of all the state estimates of each route are presented in Tables 5-8. From the
tables, it can be found that the four filters have not made a significant difference to state estimation (not
positioning). UKF and the EKF have roughly identical performance in contrast to the simulation-based
experiments where UKF shows a distinct improvement of accuracy (Tsogas et al., 2005; Yang et al.,
2017).

A trend can be found in position estimation that E2 has the smallest relative difference, then E3 and
El has the largest relative difference, with respect to EQ. This matches the conclusions of the existing
literature that UKF outperforms EKF (Yang et al., 2017) and CTRA based filters make slightly better
position estimates than CTRV based filters (Schubert et al., 2008, 2011). The heading and turn rate
estimates of the four filters appear to be exactly the same, which is due to the CTRV and CTRA models
having the same constant turn rate hypotheses.

Compared with other state estimates, the velocity estimates of CTRA and CTRV based filters
produced relatively obvious differences, in both highway and urban scenarios. The reason is the different
velocity assumptions of the two models. The CTRA model takes acceleration into account and the
velocity is driven by acceleration; however, the CTRV model assumes the velocity remains constant.
In velocity alone, it can be observed that the relative difference of the velocity estimate in urban
driving is larger than that of highway driving, which is caused by different driving styles on highway
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Table 5. The mean RRMSE of HW1.

Model CTRV CTRA

KF EKF UKF EKF UKF

Estimate El E3 E2 EO

x (m) 0-02094 0-01884 0-03841 0

y (m) 0-03227 0-03002 0-01225 0

0 (deg) 0-00289 0-00108 0-00523 0

v (m/s) 0-11288 0-11288 0-00044 0

a (m/s?) - - 0-00041 0

w (deg/s) 0-00177 0-00010 0-00278 0
Table 6. Mean RRMSE of HW2.

Model CTRV CTRA

KF EKF UKF EKF UKF

Estimate El E3 E2 EO

x (m) 0-05695 0-05487 0-03683 0

y (m) 0-05904 0-05671 0-05054 0

0 (deg) 0-00369 0-00148 0-00532 0

v (m/s) 0-15800 0-15799 0-00157 0

a (m/s?) - - 0-00082 0

w (deg/s) 0-00291 0-00017 0-00339 0
Table 7. Mean RRMSE of NU1.

Model CTRV CTRA

KF EKF UKF EKF UKF

Estimate El E3 E2 EO

x (m) 0-02355 0-01850 0-01011 0

y (m) 0-02975 0-02224 0-01493 0

0 (deg) 0-00883 0-00027 0-00877 0

v (m/s) 0-34869 0-34869 0-00045 0

a (m/s?) - - 0-00192 0

w (deg/s) 0-00749 0-00011 0-00751 0

and urban routes. On the highway, drivers prefer to drive the car at an even speed most of the time;
whereas, in urban areas, many accelerating/decelerating manoeuvres have to be performed, especially
at road intersections. That is why acceleration in urban driving shows higher standard deviations than
highway driving (Tables 3 and 4). The changes in acceleration result in the greater relative difference in
velocity estimation. In low dynamic situations (Tables 5 and 6), the performance of the two models is
approximately the same.

The overall results indicate that the motion model has more effect on the filter’s performance than the
KF form; with the same process model, the accuracy performance of EKF and UKF is almost identical.
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Table 8. Mean RRMSE of NU2.

Model CTRV CTRA
KF EKF UKF EKF UKF
Estimate El E3 E2 EO
x (m) 0-02471 0-01833 0-01794 0
y (m) 0-02887 0-02144 0-01475 0
f(deg) 0-01280 0-00042 0-01281 0
v (m/s) 0-37153 0-37152 0-00053 0
a (m/s?) - - 0-00234 0
w(deg/s) 0-00529 0-00018 0-00549 0
Table 9. Average time cost per iteration of HW1 (GPS@20 Hz).
HWI EKF UKF UKF/EKF
CTRV 9-56097 13-11299 1-37151
CTRA 12-86629 24-83430 1-93018
CTRA/CTRV 1-34571 1-89387 2-59747
Table 10. Average time cost per iteration of HW2 (GPS@20 Hz).
HW2 EKF UKF UKF/EKF
CTRV 9-66745 12-99528 1-34423
CTRA 13-21840 25-25782 1-91081
CTRA/CTRV 1-36731 1-94362 2:61267

In high dynamic situations and where the speed estimate is critical, the CTRA model based filter is
recommended. Otherwise, the performance of the CTRV model based filter is also acceptable.

The negligible estimation differences among the four filters are explained by the non-severe nonlin-
earities of the CTRV and CTRA models, which mean that the linearisation in EKF does not cause much
information loss. Besides, the low dynamics of the vehicle and the high sampling rate of the sensor
make the vehicular motion quasi-linear. UKF thus does not have obvious superiority.

3.3.2. Time efficiency
Limited by the space of this paper, in this section, the results of HW1-1 and HW2-1 drives, where
GPS worked at 10 Hz, arre not presented. In the experiments, when using LiDAR and IMU, a complete
iteration consists of 10 predictions, 10 IMU updates and one LiDAR update; for GPS and IMU, a
complete iteration consists of five predictions, five IMU updates and one GPS update. This is done by
using an ROS (Robot Operating System) time synchroniser (for more information, please see http://
wiki.ros.org/message_filters). The experiments were run on a normal personal computer (Inter Core i7-
4790 CPU @ 3-6 GHz, RAM 8G, Windows 10). Each drive’s experiment was repeated 10 times. The
running time of each estimator was recorded and the average time cost (microsecond) per iteration was
calculated and shown in Tables 9—12.

In Tables 9—-12, each row records the time cost of EKF and UKF, using the same model; and each
column is the time cost of the filter using identical KF form and different models. The UKF/EKF
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Table 11. Average time cost per iteration of NUI (LIDAR@ 10 Hz).

NUI EKF UKF UKF/EKF
CTRV 16-14401 21-36358 1-32331
CTRA 22-95781 42-59849 1-85551
CTRA/CTRV 1-42206 1-99398 2-63866

Table 12. Average time cost per iteration of NU2 (LiDAR@ 10 Hz).

NU2 EKF UKF UKF/EKF
CTRV 16-84575 22-54865 1-33854
CTRA 23-85105 44-92495 1-88356
CTRA/CTRV 1-41585 1-99236 2-66684

column records the time cost rate of UKF and EKF with the same model, and the CTRA/CTRV row
records the time cost rate of the filters using identical KF form and different models. In particular, the
bottom-right cell is the time cost rate of the slowest (UKF-CTRA) and the fastest filters (EKF-CTRV).
A clear conclusion can be drawn that, when utilising the same model, EKF is faster than UKF; and when
utilising the same KF form, the filter using CTRYV is faster than the filter using CTRA. For a higher
dimension model, EKF is obviously faster than UKF since UKF has to calculate 2L + 1 sigma points by
taking a matrix square root of the state covariance matrix at each iteration and propagating these sigma
points at the prediction and update steps.

In Tables 9 and 10, the average time cost of each filter is shorter than that in Tables 11 and 12. This
is caused by the higher update frequency of GPS (20 Hz) compared with LiDAR (10 Hz). Despite that,
the UKF/EKF and CTRA/CTRV rates are approximately equal.

It is remarkable that the EKF-CTRYV is about 2-6 times faster than the UKF-CTRA while their
accuracies are almost equal (see Tables 5-8). EKF-CTRV may not make a significant improvement in
efficiency in most current applications, where just the states of several vehicles need to be estimated.
When the amount of vehicles increases substantially, however, it becomes another situation, such as
SENSORIS (SENSORIS, 2017) where data is exchanged between the vehicle sensors and a dedicated
cloud. As Figure 7 illustrates, the data from vehicles and roadside sensors are gathered into the cloud,
where vehicle state estimation is essential for mobility related applications. Such a system has urgent need
of real-time processing. In this situation, the EKF-CTRV filter will show its distinguished performance.
For example, in the same amount of time, the EKF-CTRV can process information from nearly 2,600
vehicles; however, the UKF-CTRA can only process information from 1,000 vehicles. The efficiency of
the system can be greatly improved, with negligible accuracy loss.

In summary, for a specific application, an ideal filter is composed of the most appropriate motion
model and KF form, taking both accuracy and efficiency into consideration. In vehicular state estimation,
EKF and UKF have not made distinct differences in accuracy; however, in the efficiency aspect, EKF
is faster than UKF. The state estimation performance of the CTRV and CTRA model based filters is
roughly identical.

3.4. Comparison of the models’ performance in path prediction

To investigate the models’ properties and the affecting factors in path prediction, the predicted path is
defined by Equation (29).

100
path = {p,,p,,-...P,, }, where p, = [x,y]T = [0 1 0} F(x;_,),t; €{0,0.1,...,3} (29)
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Cloud

Figure 7. Dedicated cloud for vehicle and road side sensor.

where the path consists of sequential position points predicted by the kinematic model F (CTRV or
CTRA). Given an initial state X,,, a path can be generated iteratively via Equation (29).

The relative average Euclidean error (RAEE) at instant #; of a certain PATH defined in Equation (30)
is used to measure the path’s reliability evolution, where path; denotes the j-th predicted path; N is the
number of predicted paths and PATH € {E1P1, E3P1, E2P1, EOP1, E2P2, EOP2}.

path; al

N

1 . .

RAEE(t;, PATH) = ¥ Z |[pP — phasctivey|  p? "7 ¢ path ;,path; € PATH (30)
=1

Since the baseline estimated based on GPS measurements still retained residuals of several metres,
for reasons of caution, the path prediction experiment was not conducted on the highway drive. In
contrast, LIDAR provided sub-metre positioning results, at least (Liu et al., 2020). In this section, just
the experiments at Nagoya University are discussed.

The evolution of RAEE over the time of each drive on routes NU1 and NU2 is presented in Figures 8
and 9, respectively. In the figures, the RAEE evolution of a certain PATH is represented by a marked line
with different colour. The red and green lines indicate CTRV and CTRA based prediction, respectively.
The triangular and circular marks, respectively, indicate that the EKF or UKF estimate is used in the
prediction. The colour of the mark indicates the process model used in state estimation; red is CTRV
and green is CTRA.

In Figures 8 and 9, there are three outstanding characteristics: (1) the red lines with red marks have the
largest RAEE, which means the paths predicted by CTRV using the state estimates of CTRV-based filters
have the largest relative difference; (2) the triangular and circular marks are superposed, which means
the KF form (EKF or UKF) barely affects the path prediction; (3) all the RAEESs increase exponentially
over time. It can be inferred that (1) is caused by the different initial velocity estimates because the red
lines with green marks have the lowest RAEE and the only obvious differences between them are the
initial velocities, see Tables 7 and 8. The reason for (2) is the negligible estimate difference between
identical-model based EKF and UKEF, see Tables 7 and 8. The cause of (3) is that the prediction, in fact,
is an open-loop KF without any updates, thus the prediction becomes divergent over time.
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(a) RAEE evolution of NU1-4 (std(a)=0.4828) (b) RAEE evolution of NU1-2 (std(a)=0.4977)
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Figure 8. RAEE evolution over time of each drive on route NU1.

It can be observed in NU1-4 and NU1-2 drives [Figures 8(a) and 8(b)] that the CTRV and CTRA
models have almost identical performance. This is because the acceleration was steady in the drives [low
standard deviation of acceleration (std-a)] which results in low standard deviation of velocity (std-v), see
Table 3. In such condition, the vehicle was likely to move uniformly; therefore, the two models produced
almost identical predictions. However, with low std-a, in NU2-1 and NU2-3 drives [Figures 9(a) and
9(b)], CTRV predicted better than CTRA. The reasons are associated with the road conditions. The NU2
route is the most curved and sloped, so it is harder for the driver to keep a constant acceleration than a
constant velocity on NU2. Therefore, the constant velocity hypothesis of CTRV is more realistic than
the constant acceleration hypothesis of CTRA. It can be summarised that in low std-a situations (low
dynamics) CTRV model predicts more reliably. With std-a increasing, RAEE of the CTRA prediction
decreased with respect to that of CTRV at the beginning (Figures 8 and 9, (c) and (d)]; however, RAEE
of the CTRA prediction became larger than that of CTRV about 2 s later. This reveals the fact that
continuous long-term accelerating is not permitted on the Nagoya University campus. It can be inferred
that the CTRA model predicts more reliably when the vehicle has high dynamics [Figures 8(d) and 9(d)].

From the experiments, some conclusions can be drawn. Firstly, the reliability of predicted path
decreases over time; a standalone model should not be used for long-term prediction. Secondly, velocity
estimate affects path prediction. Thirdly, the model that matches with the vehicle’s driving status predicts
better; the prediction model should be chosen dynamically considering the vehicle’s behaviour, as done
by Lytrivis et al. (2011).
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(a) RAEE evolution of NU2-1 {std{a)=0.4746) (b) RAEE evolution of NU2-3 (std{a)=0.5114)
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Figure 9. RAEE evolution over time of each drive on route NU2.

4. Conclusions

This paper has been devoted to comparing the accuracy and efficiency performance of UKF and EKF
with different motion models, in vehicular state estimation. The models’ properties and the factors
affecting path prediction have also been investigated. UKF and EKF show roughly the same accuracy;
the only obvious difference occurs in velocity estimation which is caused by different velocity hypotheses
of the CTRA and CTRV models. However, they differed significantly in efficiency. With an identical
process model, EKF works faster than UKF; with identical KF form, the filter using CTRV is faster
than that using CTRA. The fastest filter, EKF-CTRY, is about 2-6 times faster than the slowest, UKF-
CTRA. For the application that needs to process mass data with strict real-time demands, EKF-CTRV
might be an ideal choice. The velocity estimate and the motion model used affect the reliability in path
prediction. A realistic model that reflects the real driving status generates a reliable path. A standalone
motion model is not recommended for performing long-term prediction; some additional information
should be taken into account, such as the road geometry and topology.

The experiment in this paper was conducted according to urban and highway scenarios. We can also
consider more complex scenarios with sensor problems: multipath effect and signal blockage in GPS,
drifting in IMU, and LiDAR’s sensitivity to the weather. Experiments with UKF and EKF with these
factors will be included in the authors’ future work.
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APPENDIX A: JACOBIAN MATRICE OF PROCESS AND OBSERVATION MODELS

For CTRV model, suppose the state transition function is

w1 = F(x) = [fox) fy(%0) fo(x0) folxi) fu(xi)]” (A1)

Then, the Jacobian matrix of CTRV model is as follows.

o 0L F O]
00 0v Ow
oy M 0 0f
Jr = 00 v Jdw (A2)
00 1 0 T
00 0 1 O
00 0 0 I |
where
Ofx _ w
6_]; = or [cos(Oy + wiT) — cos(6y)] (A3)
0 fx | .
6{/ = w—k [sin(0x + wiT) — sin(6y)] (A4)
Gfx Vi . . . Vy
e 7[51n(9k +wiT) —sin(6y)] + or cos(Ox +w T)T (AS5)
k
af, vy . .
6_9y = o [sin(0x + wiT) — sin(6y)] (A6)
afy 1
5y = w—k [—cos(0y + wT) + cos(6)] (A7)
ofy Vg Vv .
90 -2 [cos(Ox + wiT) — cos(6x)] + — sin(Ox + wi )T (A8)
w wy Wi

For CTRA model, suppose the state transition function is

i1 = FOx) = [ fe(xe) fy(x0) fo(xa) fo(Xe) fa(xi) fu(xi) ] (A9)

Then, the Jacobian matrix of CTRA model is as follows.

[ o O S 0fc OR)
00 0OJv da Ow
01 2 9L 0f Oty
Jp = 00 0OJv da Ow (A10)
o0 1 o0 o T
00 O 1 T 0
00 0 0 1 0
00 0 0 0 1 |
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where
afx 1 ag . .
= —[(vi + axT) cos(0x + wiT) — vi cos(0x)] — — [sin(0x + wiT) — sin(y)] (A11)
00 Wi wi
1
O _ — [sin(0x + wiT) —sin(6y)] (A12)
oV wyg
Ofc _ 1 . 1
= — [T sin(0g + wiT)] + — [cos(0x + wiT) — cos(8x)] (A13)
da  wi wi
0 fy 1 1 .
= —|[(vk +axT) cos(0y + wi T)T] — — [(vi +2axT) sin(0y + wi T)
ow  wg ‘“i
2
— v sin(0y)] - i3k[cos(6k + wiT) — cos(y)] (A14)
Wi
afy 1 . . ag
—— = — [(vi + axT) sin(Oy + wiT) — vy sin(0;)] + — [cos(Ox + wi T) — cos(6)] (A15)
00 Wi wi
afy 1
—— = —[—=cos(0r + wiT) + cos(6¢)] (A16)
v wyg
afy, -1 | B .
— = — [T cos(Ox + wiT)] + — [sin(Oy + wiT) — sin(6;)] (A17)
da  wg wi
afy 1 . 1
-— = —[(Vk + akT) sm(Gk + a)kT)T] + — [(Vk + ZakT) COS(Qk + (,L)kT)
ow  wg wi
2
—vicos(Oy)] - Lsk[sin(ek + wiT) —sin(6;)] (A18)
Wi

For the directly observed measurements: position, heading and turn rate, their measurement models’
Jacobian matrices are
=% =

Ju 1 (A19)

The velocity measurement models’ Jacobian matrices are

_ _0H, |00 —vsin(@) cos(d) 0O
CTRV :Ju, = ox [0 0 vcos(0) sin(9) 0 (A20)
_ _0H, |00 —vsin(#) cos(d) 00
CTRA: Ju, = ox [0 0 vcos(8) sin(6) 00 (A2D)
And acceleration measurement model’ Jacobian matrix is
_0H, |00 —asin(6) 0 cos(d) 0
Ju, = ox [0 0 acos(d) 0 sin(g) 0 (A22)

APPENDIX B: SAMPLE DATA

The sample data from LiDAR, GPS and IMU generated by Aufoware in this paper are available at:
https://github.com/LuTaonuwhu/LiDAR-GPS-IMU-Data.git.
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