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Abstract: Lane-level localization is critical for autonomous vehicles (AVs). However, complex urban
scenarios, particularly tunnels, pose significant challenges to AVs’ localization systems. In this
paper, we propose a fusion localization method that integrates multiple mass-production sensors,
including Global Navigation Satellite Systems (GNSSs), Inertial Measurement Units (IMUs), cameras,
and high-definition (HD) maps. Firstly, we use a novel electronic horizon module to assess GNSS
integrity and concurrently load the HD map data surrounding the AVs. This map data are then
transformed into a visual space to match the corresponding lane lines captured by the on-board
camera using an improved BiSeNet. Consequently, the matched HD map data are used to correct our
localization algorithm, which is driven by an extended Kalman filter that integrates multiple sources
of information, encompassing a GNSS, IMU, speedometer, camera, and HD maps. Our system is
designed with redundancy to handle challenging city tunnel scenarios. To evaluate the proposed
system, real-world experiments were conducted on a 36-kilometer city route that includes nine
consecutive tunnels, totaling near 13 km and accounting for 35% of the entire route. The experimental
results reveal that 99% of lateral localization errors are less than 0.29 m, and 90% of longitudinal
localization errors are less than 3.25 m, ensuring reliable lane-level localization for AVs in challenging
urban tunnel scenarios.

Keywords: localization; autonomous vehicles; HD map; GNSS; IMU; camera; deep learning;
EKF; tunnels

1. Introduction

Localization is one of the most fundamental components of autonomous vehicles (AVs).
Currently, Global Navigation Satellite Systems (GNSSs) and Inertial Measurement Units
(IMUs) are widely used for vehicular localization and navigation. In open environments,
GNSS single-point positioning can only achieve accuracy to within several meters due to
issues such as satellite orbit and clock errors and tropospheric and ionospheric delays. These
errors can be corrected by observations from a surveying reference station. For example,
the carrier-phase-based differential GNSS technique, known as Real-Time Kinematic (RTK)
positioning, can achieve centimeter-level positioning accuracy [1,2]. IMUs, using the
embedding gyroscopes and accelerometers, can continuously calculate position, orientation,
and velocity via dead reckoning technologies without external information [3], making
them immune to jamming and deception. However, standalone IMU dead reckoning
algorithms suffer significantly from error accumulation due to sensor noise. Combining a
GNSS and an IMU, which have complementary features, typically results in more reliable
and accurate localization using various filtering techniques, such as the Kalman filter (KF).
This approach mitigates the effects of the inherent drawbacks of sensors [4]. However,
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in typical urban scenarios, such as downtown areas and tree-lined roads, issues like
satellite signal blockage and severe multi-path effects compromise even RTK positioning’s
availability and accuracy [5,6]. In more challenging scenarios, such as tunnels, the GNSS
becomes completely unavailable. Consequently, positional errors accumulate significantly
due to long-term absence of global reference information, especially when inertial sensors
are used [7]. Therefore, the required lane-level localization accuracy in challenging urban
scenarios is yet to be achieved.

Currently, most AVs heavily rely on expensive Light Detection And Ranging (LiDAR)
sensors and high-end IMUs for perception and localization in GNSS-denied environments.
However, from a consumer perspective, these sensors are prohibitively expensive. For-
tunately, the use of mobile measurement fleets in AVs makes high-definition mapping
feasible. High-end GNSS and IMU systems are used to obtain the ego-position, enabling
the creation of high-definition (HD) maps based on the road images and 3D point cloud
data collected by these on-board sensors [8–10].

The demand for HD maps has been widely recognized and accepted for over a
decade [11]. Since HD maps are not limited by factors like sensing range and weather
conditions, they enable AVs to become location-aware, environment-aware, and path-
aware. HD maps describe road geometry and topology and provide extensive lane-level
information, such as lane boundaries, traffic lights, and barriers, with accuracy up to a few
centimeters [12]. Therefore, HD maps can be applied to AVs and fused with other on-board
sensors to improve environmental perception, achieving higher accuracy and more robust
self-localization. By incorporating HD maps, the on-board GNSS and IMU localization
module can realize required lane-level localization without needing expensive high-end
GNSS/IMU kit upgrades.

The electronic horizon (EH) is a system concept that lets vehicles know what is
happening on the road ahead and allows them to react to that information based on digital
maps. Currently, EHs are widely employed by most major commercial vehicle OMEs
(original equipment manufacturers) [13]. Since the on-board sensors have limited detection
ranges, the EH typically serves as a virtual sensor, providing an extended range view of the
surroundings to the ego-vehicle, thereby enriching safety and efficiency applications [14],
such as Advanced Driver Assistance System (ADAS) applications [15–18]. In this paper, an
EH is employed for tunnel scenario recognition, concurrently providing HD map data to
our localization system.

In this paper, we present a fusion localization solution, as illustrated in Figure 1.
By relying on production-grade sensors and matching visual lane lines extracted by deep
learning networks with HD map lane lines acquired via EH technologies, we achieve lane-
level localization accuracy in challenging continuous tunnel scenarios in cities. Specifically,
in addition to the GNSS, IMU, and wheel speedometer sensors, we use an improved
deep learning model to extract lane lines from real-time camera images and match them
with the HD map lane lines to obtain pose optimization measurements. Moreover, we
use an EH to identify tunnel scenarios and select appropriate sensor measurements to
update our extended KF (EKF), which integrates multiple sources of information from
on-board sensors.

The main contributions of this paper are summarized as follows:

• EKF-Based Multiple-Sensor and HD Map Fusion Framework with Electronic Horizon:
We propose an EKF-based fusion framework that integrates multiple sensors and HD
maps via an EH to achieve lane-level localization in challenging urban tunnel scenes
using mass-production-level sensors. Our system leverages HD maps and an EH
to complement the GNSS and IMU sensors. We firstly use an improved BiSeNet to
recognize lane lines from images captured by an on-board camera; these lane lines
are then matched with HD map data managed by the EH module. The accurate
geometric information obtained from this matching process is then used to correct the
EKF estimations in GNSS-denied tunnel scenarios.
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• Improving GNSS Integrity with HD Maps and EH Technologies: We enhance GNSS in-
tegrity in automotive applications by using HD maps and EH technologies to identify
GNSS-denied scenarios. This allows us to flexibly switch between sensor measure-
ments derived from the GNSS, camera, and HD maps based on the current scenario.

• Comprehensive Evaluation: The proposed method is evaluated using a challenging
urban route where 35% of roads are within tunnels, lacking GNSS signals. The experi-
mental results demonstrate that 99% of lateral localization errors are less than 0.29 m
and 90% of longitudinal localization errors are less than 3.25 m, ensuring reliable
lane-level localization throughout the entire trip.
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Figure 1. The proposed GNSS/IMU/Camera/HD map integrated localization system.

The remainder of this paper is organized as follows. Section 2 provides a survey of
the related work. Section 3 overviews our system, which is detailed in Section 4. Section 5
carries out real-world experiments. Finally, conclusions and future work are presented
in Section 6.

2. Related Work

Generally, in open environments, the integration of a GNSS and an INS (inertial
navigation system) can yield satisfactory localization results [19] even under exceptional
conditions such as abnormal measurements [20] and sensor failures [21].

However, in challenging urban scenarios, such as tunnels, GNSS signals are unavail-
able, seriously weakening the performance of the GNSS/INS integrated system. To achieve
accurate vehicle localization in such scenarios, additional sensors such as LiDAR and cam-
eras are employed using techniques such as visual odometry (VO, [22]) and Simultaneous
Localization And Mapping (SLAM, [23]). According to the VO ranking released in the
KITTI [24] dataset test [25], the first ranked SOFT2 method [22] reaches a translational
error rate of 0.53% on average. In VO, without closed-loop correction, the pose error
trends to diverge as the driving distance increases. However, in real life, people’s travel
demands cannot always follow closed loops, where the origin and destination are the same.
Consequently, there is a growing inclination towards using absolute localization solutions
based on vision and HD map matching, both in academia and industry.

Compared with the high-end sensor-based approaches (such as LiDAR), matching
HD maps and low-cost cameras is regarded as an more affordable and promising solution
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to achieving accurate, lane-level vehicle localization. In [26], a precise localization method
is presented by matching the lane markings and curbs that are detected by camera with
highly accurate maps; in this study, an oriented matching filter is applied to detect the lane
markings [27], and a Kalman Filter is used to determine the position of a vehicle relative
to the markings in both lateral and longitudinal directions. In [28], two lateral cameras
are used to detect road markings, and then the distance between these markings and the
vehicle is estimated; then, the distance is coupled with the map data via an EKF. To achieve
a vehicle’s global localization in intersections, the authors of [11] align the visual landmarks
perceived by an on-board visual system with extended digital maps. In [29], a low-cost
GNSS is coupled with an INS and HD maps, achieving high precision for multiple-target
localization. In [30], a robust lane-marking detection algorithm as well as an efficient shape
registration algorithm are proposed to improve the robustness and accuracy of the global
localization of a robotic car. The concept of Monocular Localization with Vector HD Maps
(MLVHM) is firstly presented in [31], in which a novel camera-based map matching method
is proposed to efficiently align semantic-level geometric features acquired from camera
frames with the vector HD maps, obtaining high-precision absolute vehicle localization
with minimal cost. In [32], a visual semantic localization algorithm is proposed; the accurate
localization is achieved by HD map and semantic feature matching. In [33], visual odometry
and vector HD maps are fused in a tightly-coupled optimization framework to tackle sparse
and noisy observation problems. In [34], the vehicle’s coarse pose is firstly initialized by
GPS measurement and then refined by implicitly aligning the semantic segmentation
result between image and landmarks in HD maps. In [35], the authors introduce semantic
chamfer matching (SCM) to model the monocular map-matching problem and combine
visual features with SCM in a tightly coupled manner.

Semantic segmentation, which extracts the semantics from image streams provided
by cameras, plays a vital role in the above studies. The semantic segmentation tasks
require rich spatial information and sizable receptive fields, which significantly increase
computational burdens. To achieve real-time inference speed, current approaches usually
reduce spatial resolution, potentially causing poor performance. A widely used Bilateral
Segmentation Network (BiSeNet) is proposed to address this dilemma [36]. The BiSeNet
uses a spatial path with a small stride to preserve spatial information and generate high-
resolution features. A context path with a fast down-sampling strategy is utilized to obtain
a sufficient receptive field. The features output by these two paths are combined by a
feature fusion module. An upgraded BiSeNet is now available in [37].

While existing studies demonstrate high-accuracy positioning in their respective
scenarios, experiments and verification in complex urban tunnel scenarios are notably
lacking. Some studies resort to high-end sensors such as LiDAR [38] to address these
challenges. In contrast, this paper endeavors to offer a solution for lane-level localization in
tunnel scenarios utilizing mass-production sensors.

3. System Overview

The localization process of our system is depicted in Figure 2 and described as follows:

1. Initial Position Acquisition: A GNSS (e.g., GPS) is used to acquire the initial position.
2. HD Map Data Loading: An electronic horizon (EH) module is utilized to load sub-HD

map data.
3. Lane Line Recognition and Representation: An improved BiSeNet (iBiSeNet) is used

to recognize lane lines from camera images. These lane lines are then represented by
cubic polynomials fitted using a weighted least squares (WLS) method.

4. Lane Line Matching and Pose Correction: The lane lines extracted from images are
matched to the corresponding segments in HD maps using the Levenberg–Marquardt
(LM) method. Consequently, accurate pose corrections are derived from the HD maps.

5. Motion Inference: Simultaneously with steps 1–4, IMU and vehicle wheel speedometer
data are employed to infer vehicular motion based on the initial location.



Remote Sens. 2024, 16, 2230 5 of 19

6. Tunnel Scenario Identification: According to the sub-HD map constructed by the EH
and the current vehicular position, tunnel scenarios are identified. If the vehicle is
within a tunnel, camera and HD map matching is applied at 30 Hz; otherwise, GNSS
measurements are used at 10 Hz.

7. Localization Update: The localization result is updated through the EKF, and the
optimal pose is set as the initial pose at the next time step.
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Wheel speed
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Initialization
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transformation
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Figure 2. System overview; the key technologies used in this system are highlighted in blue text.

4. GNSS/IMU/Camera/HD Map Integrated Localization
4.1. Road Scenario Identification Based on Electronic Horizon

Integrity refers to a system’s ability to promptly issue effective warnings to users
when its measurements become unreliable for specific operations. As the integrity of civil
GNSS is not sufficient for vehicle applications, it is important to identify GNSS signals
with poor accuracy to maintain the accuracy and robustness of the vehicle localization
system. Generally, Geometric Dilution of Precision (GDOP) is used as an indicator to
describe the geometrical arrangement of GNSS satellite constellations [39]. Selecting the
satellite constellation with the lowest GDOP is preferred, as GNSS positioning with a low
GDOP value typically results in better accuracy. For example, Ref. [40] identifies GNSS
availability using the GDOP values. However, calculating GDOP is a time- and power-
consuming task that involves complicated transformations and inversion of measurement
matrices. The environment information stored in HD maps can be effectively used to
improve GNSS integrity.

Traditional car navigation systems rely on global maps. Over the past few decades,
such maps have played crucial roles in helping drivers to select the optimal routes [41,42].
However, an AV perceives surroundings from its own perspective rather than a global view-
point. Therefore, it is more appropriate to apply HD maps to AVs using AV-centric views
through the EH. A demonstration of the EH applied in our system is shown in Figure 3.

The EH greatly reduces the amount of topology network data that need to be transmit-
ted to applications, making the HD map applications more efficient. Various properties
obtained from the HD maps can therefore be provided to indicate a vehicle’s surrounding
environment along its driving route, including road types such as bridges and tunnels
as well as the starting and ending positions of these tunnels. By using these pieces of infor-
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mation along with vehicular data, such as position and speed, it is possible to accurately
identify the current road scene and predict the upcoming road scenarios.

Figure 3. A demonstration of the EH (electronic horizon) applied in this paper. The left column:
real world; the right column: electronic horizon. In the top-right of the figure, the EH provides the
following pieces of information: Lane Number: 3 (the vehicle is in the third lane (from the left) of the
road); FOW (form of way): Link Divided (the road ahead is divided); Curvature: 0; Slope: 0.036488%;
Heading: 16.457718 degrees. In the bottom-right of the figure, the EH provides the following pieces
of information: Tunnel (the vehicle is in a tunnel); Lane Number: 3; FOW: Link Divided; Curvature:
0; Slope: 0.041921%; Heading: 16.787982 degrees.

Specifically, using the EH and the current vehicle position, the distance to the upcom-
ing tunnel can be determined, and the arrival time at the tunnel can be easily calculated.
Figure 4 illustrates the patterns of the tunnel scenario identification process as a vehicle
drives through a tunnel.
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Figure 4. Explanations of tunnel scenario identification patterns using an EH.
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4.2. Lane Line Recognition Based on Deep Learning Method

The iBiSeNet proposed in this paper is depicted in Figure 5. This deep learning
network is adopted for lane line recognition. The original BiSeNet [36], developed by
Megvii Technology, is a real-time semantic segmentation network. Using ResNet-18 as a
base model, the fast version of BiSeNet achieved 74.7% mean IOU (Intersection over Union)
with the CitiScapes verification datasets at 65.5 FPS [36].

In this paper, we introduce two main modifications [43] to the original BiSeNet:

• We incorporate both local attention and multi-scale attention mechanisms, in contrast
to the original BiSeNet, which uses only classic attention.

• We restore images by 4 times, 4 times, and 8 times deconvolution in the last three
output steps, whereas the original BiSeNet employs 8 times, 8 times, and 16 times
upsampling in its last three output layers.

After these modifications, the IOU of our BiSeNet is improved to 89.69% for the white
lane line recognition, as shown in Table 1. Although the speed drops to 31 FPS, it still meets
the real-time requirements in our application.
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Figure 5. The iBiSeNet for lane line recognition.

Table 1. Performance of lane line recognition using iBiSeNet.

Method Recall Pixel Accuracy IOU Speed

Ours 92.42% 96.81% 89.69% 31 FPS
BiSeNet – – 74.70% 65.5 FPS

When the lane lines are recognized by the iBiSeNet, they are represented through cubic
polynomials. To determine the optimal parameters of the recognized lane lines, a weighted
least squares (WLS) algorithm [44] is employed to find the best-fitting parameters c0, c1, c2,
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and c3 for the cubic polynomial expressed by Equation (1), where (x, y) denote the pixel
coordinates in the image coordinate system.

y = c3x3 + c2x2 + c1x + c0 (1)

As shown in Figure 6, the iBiSeNet model effectively recognizes lane lines even in
tunnel scenarios. The results of the cubic polynomial fitting are overlaid on the images,
demonstrating the model’s accuracy in identifying and modeling the lane geometries.

Figure 6. Snapshots of lane line recognition and cubic polynomial fitting in tunnel scenarios.

4.3. Matching between Visual Lane Lines and HD Map Lane Lines

Since HD maps are pre-collected and produced, they can achieve a high spatial
resolution of up to 20 cm. This accuracy is verified by using RTK control points and
high-performance LiDAR point cloud data, as shown in Figure 7.

Figure 7. Accuracy verification of HD maps.
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In order to match HD map lane lines with the visual lane lines recognized by our smart
camera, it is essential to transform them into the same coordinate system. In this paper,
the HD map lane lines are transformed into the image coordinate system of the on-board
camera. This projection involves several transformations between different coordinate
systems. The detailed process is described as follows.

As the HD maps are represented in a world coordinate system, firstly, we need to
transform the world coordinates [xw, yw, zw]T into camera body coordinates [xc, yc, zc]T

through a rigid transformation using a rotation matrix R and a translation vector t:xc
yc
zc

 = R

xw
yw
zw

+ t (2)

This equation can be further written in a homogeneous coordinate form:
xc
yc
zc
1

 = Ke


xw
yw
zw
1

, Ke =

[
R t

01×3 1

]
(3)

where Ke is called the extrinsics of the camera, which are calibrated using the classical
vanishing method [45], in this paper.

Then, the camera body coordinates are transformed into to image coordinates through:

zc

xi
yi
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




xc
yc
zc
1

 (4)

where f is the focal length of the camera.
The image coordinates are further transformed into pixel coordinates via:x

y
1

 =

 1
dx 0 x0
0 1

dy y0

0 0 1


xi

yi
1

 (5)

where dx and dy are the pixel length in the x and y direction, and (x0, y0) is the princi-
pal point.

In summary, the transformation from the world coordinates [xw, yw, zw]T to pixel
coordinates [x, y]T is achieved through:

zc

x
y
1

 = KiKe


xw
yw
zw
1

 (6)

where

Ki =

 1
dx 0 x0
0 1

dy y0

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0

 (7)

and Ki is called the intrinsics of the camera.
Once the HD map lane lines are projected to the pixel coordinate system, three devia-

tion variables—vertical deviation δx, horizontal deviation δy, and yaw deviation δθ—are
applied to match the lane lines of HD maps with those recognized by the camera. The match-
ing process, illustrated in Figure 8, is a typical nonlinear optimization problem. We seek
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the optimal vector, as expressed in Equation (8), to minimize the differences between the
projected HD map lane lines and the visually recognized lane lines at specified positions
i = 0, · · · , n.

d =

δx
δy
δθ

 (8)

Therefore, the following object function is designed:

f (x) = min
d=[δx,δy,δθ]

n
∑
0
∥ymap

i − y(xi)∥2

2
(9)

where ymap
i is the y coordinate data of map lane lines in visual space at position xi, and

y(xi) is the cubic polynomial function of a visual lane line that is recognized by the on-
board camera.

ra
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Figure 8. Matching between the visual lane line and HD map lane line.

We employ the Levenberg–Marquardt (LM) method [46] to solve this object function,
using feature points at i = {0, 10} in this paper.

In order to match the visual lane line with the HD map lane line, we firstly calculate
the deviated positions via applying the deviation vector d = [δx, δy, δθ]T to the visual lane
line that is described by Equation (1):

y(x) = c3(x − δx)3 + c2(x − δx)2 + tan(δθ + arctan(c1))(x − δx) + (c0 + δy) (10)

At feature position xi, the residual distance ri between the map lane line and the visual
lane line can be calculated through:

ri = ymap
i − y(xi) (11)

Substituting x = 0 into Equation (10), we can calculate the residual distance at the first
feature point:

r0(d) = ymap
0 + [c3(δx)3 − c2(δx)2 + tan(δθ + arctan(c1))(δx)− (c0 + δy)] (12)

and for x = 10, the residual distance at the second feature point is calculated through:
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r10(d) = ymap
10 − [c3(10 − δx)3 + c2(10 − δx)2 + tan(δθ + arctan(c1))(10 − δx)− (c0 + δy)] (13)

These two residual distances r0 and r10, functions of the deviation vector d, are used
to feature the distance between the visual lane line and HD map lane line. To mini-
mize the sum of these residual distances, matching these lane lines, the following object
function is constructed: [

r0
r10

]
= f (d) =

[
r0(d)
r10(d)

]
(14)

This function can be solved through the LM algorithm. Firstly, the Jacobian of
Equation (14) is calculated through:

J(d) =
∂ f (d)

∂d
=

[
∂r0
δx

∂r0
δy

∂r0
δθ

∂r10
∂δx

∂r10
∂δy

∂r10
∂δθ

]
(15)

where
∂r0

∂δx
= 3c3δx2 − 2c2δx + tan(δθ + arctan(c1))

∂r10

∂δx
= 3c3(10 − δx)2 + 2c2(10 − δx) + tan(δθ + arctan(c1))

∂r0

∂δy
= −1

∂r10

∂δy
= −1

∂r0

∂δθ
=

δx
cos(δθ + arctan(c1))2

∂r10

∂δθ
=

δx − 10
cos(δθ + arctan(c1))2

(16)

Then, according to the LM algorithm, the optimal d can be found using the following
iteration equation:

di+1 = di − [JT(di)J(di) + λdiag(JT(di)J(di))]
−1JT(di) f (di) (17)

where λ is the damping parameter.
As the visual lane line and HD map lane line are matched, consequently, we are able

to acquire accurate geometry data from HD maps to correct our vehicle pose even when
GNSS data are unavailable.

4.4. Multi-Source Information Fusion for Vehicular Localization Using EKF

The EKF and unscented KF (UKF) are standard solutions for nonlinear state estima-
tion. In EKF, the nonlinearities are approximated analytically through first-order Taylor
expansion. In contrast, UKF uses a set of deterministically sampled sigma points to capture
the true mean and covariance of the Gaussian random variables and, when propagated
through the true nonlinearity, captures the posterior mean and covariance accurate to the
third order (Taylor expansion) for any nonlinearity. This feature allows UKF to achieve
accurate estimations in highly nonlinear and dynamic motion scenarios [47].

However, in vehicle state estimation, the vehicle’s motion is approximately linear in
a short time interval. Our previous study [48] shows that the accuracy performance of
EKF and UKF is close, whereas EKF demonstrates higher speed than UKF. Even in more
complex vehicle motion prediction tasks [49], EKF is primarily used. To ensure the system’s
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high efficiency, an EKF that cooperates with a constant turn rate and acceleration (CTRA)
model is employed in this paper. The system state is:

xk =



xk
yk
vk
θk
ak
ωk

 (18)

where (xk, yk) is the position coordinates, θk the yaw angle, vk the velocity, ak the accel-
eration, and ωk the yaw rate at instant k. The system is described by the CTRA model
as follows:

x−k+1 = fCTRA(x+k ) = x+k +



∆x
∆y

ak∆t
ωk∆t

0
0

 (19)

where

∆x =
[(vk + ak∆t) sin(θk + ωk∆t)− vk sin(θk)]

ωk
+

ak[cos(θk + ωk∆t)− cos(θk)]

ω2
k

(20)

and

∆y =
[−(vk + ak∆t) cos(θk + ωk∆t) + vk cos(θk)]

ωk
+

ak[sin(θk + ωk∆t)− sin(θk)]

ω2
k

(21)

In our EKF, the vehicle state prediction is performed by the above CTRA model:

x−k+1 = fCTRA(x+k ) (22)

and the covariance is predicted through:

P−
k+1 = J fCTRA(x

+
k )P

+
k JT

fCTRA
(x+k ) + Qk (23)

where Qk is the known system covariance matrix, and J fCTRA(·) is the Jacobain of the
CTRA model.

As soon as the on-board sensor/visual matching measurements are available, the EKF’s
prediction is corrected through:

x+k+1 = x−k+1 + Kk+1(yk+1 − h(x−k+1)) (24)

where h(·) is the measurement function and Kk is the Kalman gain matrix, which is
as follows:

Kk+1 = P−
k+1JT

h (x
−
k+1)[Jh(x

−
k+1)P

−
k+1JT

h (x
−
k+1) + Rk+1]

−1 (25)

where R is the measurement covariance, and Jh(·) is the Jacobian function of measurement
model h(·). In this paper, Jh(·) = I, due to the following measurement models that are
applied in different scenarios being linear:

• If a vehicle is outside a tunnel, the position measurements are directly derived from
the GNSS at 10 Hz:

xk = xgnss
k

yk = ygnss
k

(26)
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• If the vehicle is driving in a tunnel, where the GNSS signals are unavailable, the ve-
hicle’s pose measurements are obtained through vision-and-HD-map matching at
30 Hz:

xk = xmatch
k

yk = ymatch
k

θk = θmatch
k

(27)

• The IMU and wheel speed measurements, which remain obtainable, are directly used
to update the vehicle’s acceleration, yaw rate, and velocity at 100 Hz:

ak = aimu
k

ωk = ωimu
k

vk = vwheel
k

(28)

Finally, the covariance matrix is updated through:

P+
k+1 = [I − Kk+1Jh(x

−
k+1)]P

−
k+1 (29)

The details of the EKF’s implementation, including initialization, parameter configura-
tions, Jacobains, and time synchronization, can be found in [48].

5. Experiments
5.1. Experimental Configurations

Our experiments were carried out on public roads in Nanjing City. The experimental
field is shown in Figure 9.

Figure 9. Experimental field and tunnel scenes in Nanjing City (image: Google).

The entire experimental route is about 36 km in total, with nine consecutive tunnels,
JiQingMen Tunnel, ShuiXiMen Tunnel, QingLiangMen Tunnel, CaoChangMen Tunnel,
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MoFanMaLu Tunnel, XuanWuHu Tunnel, JiuHuaShan Tunnel, XiAnMen Tunnel, and
TongJiMen Tunnel, with a total length of 12.86 km accounting for 35% of length of the
entire route, as presented in Table 2.

Table 2. Information of tunnels in the experimental route.

Tunnel JiQingMen ShuiXiMen QingLiangMen CaoChangMen MoFanMaLu
Tunnel Length 0.59 km 0.56 km 0.87 km 0.74 km 1.45 km

Tunnel XuanWuHu JiuHuaShan XiAnMen TongJiMen Total tunnel length
Tunnel Length 2.66 km 2.78 km 1.77 km 1.44 km 12.86 km

Route length 36.38 km 12.86/36.38 = 35%

All the sensors used in our experiments are affordable for consumers. A low-cost
integrated navigation system, Npos320 (https://daobook.github.io/apollo-doc-old/docs/
specs/Navigation/Npos320_guide.html (accessed on 15 May 2024)), is used as the GNSS
and IMU module, and a normal web camera is used in the camera module. To obtain
ground truth data to assess the localization performance of our system, a high-end GNSS
and IMU product called IMU-ISA-100C (https://novatel.com/products/gnss-inertial-
navigation-systems/imus/isa-100c (accessed on 15 May 2024)) is employed. With post-
difference processing, it could be ensured that the errors of the ground truth data are less
than 5 cm. The installation of these sensors is demonstrated in Figure 10.

The rotation matrices and translation vectors that are used to transform the local
measurements of the camera, GNSS, IMU, and other sensors to a unified positioning
coordinate system are determined by external parameter calibrations.

Figure 10. Experimental vehicle and sensors.

5.2. Error Evaluation

The localization errors’ space distribution is shown in Figure 11. The left and right
halves represent the lateral and longitudinal errors, respectively. Different colors are used
to indicate the accuracy of positioning at the sampled track points. For brevity, the original
experimental results are down-sampled using a ratio of 10:1.

This figure clearly shows that the lateral positioning error is within 0.3 m, and most of
the longitudinal positioning errors are less than 3 m within the entire trip driving through
the nine continuous tunnels. During the initial phases, as the vehicle enters XuanWuHu
and JiuHuaShan tunnels, there are brief periods where longitudinal errors exceed 6 m,
as evidenced by two distinct red point segments on the right side of Figure 11. This
occurrence can be attributed to the fact that these two tunnels are situated beneath the
XuanWu lake and are deeper than the others. The large longitudinal errors result from
the abrupt changes in elevation. Since our kinematic model is two-dimensional, lacking
representation in the z axis, it therefore performs poorly in such tunnel spaces. Fortunately,

https://daobook.github.io/apollo-doc-old/docs/specs/Navigation/Npos320_guide.html
https://daobook.github.io/apollo-doc-old/docs/specs/Navigation/Npos320_guide.html
https://novatel.com/products/gnss-inertial-navigation-systems/imus/isa-100c
https://novatel.com/products/gnss-inertial-navigation-systems/imus/isa-100c
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these deviations are promptly corrected by GNSS measurements upon the vehicle’s exit
from the tunnels, thanks to the EH module’s clever switching of sensor measurements for
different scenarios.

0.1
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0.5

2.0

3.0
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6.0

7.0

4.0

1.0

Figure 11. Localization errors’ space distribution; these points are down-sampled using a 10:1 ratio;
the left: lateral errors; the right: longitudinal errors; unit: meter

There are several potential solutions to address this problem: (1) employing a three-
dimensional vehicle motion model in the EKF; (2) using additional landmarks, such as
arrows, to refine the longitudinal estimates. These strategies remain areas for future
investigation in our work.

The time-series localization errors are presented in Figure 12. The figure demonstrates
that our system maintains accurate lateral localization throughout the entire experiment,
correctly identifying the current driving lane. For longitudinal localization errors, several
peaks are observed during the experiment, primarily due to GNSS-denied environments,
such as tunnels and overpasses. However, as soon as GNSS signals become available,
the longitudinal errors are corrected immediately.
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Figure 12. The time-series error data in lateral and longitudinal localization; the left: lateral error
(positive: right shift; negative: left shift); the right: longitudinal error (positive: forward shift;
negative: backward shift).
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The mean absolute error (MAE) and standard deviation (StD) metrics in Equation (30)
are used to quantify the localization performance.

MAE =
1
N

N

∑
i=1

|xi − xtrue
i |, StD =

√√√√ 1
N

N

∑
i=1

(xi − x̄)2 (30)

where xi is the value of an estimate and xtrue
i is corresponding true value; x̄ represents the

mean value of xi.
The overall quantitative and comparative results are summarized in Tables 3 and 4 for

our GNSS/IMU/Camera/HD Map integrated localization system and Tables 5 and 6 for a
comparison with a GNSS/IMU integrated localization system.

Table 3. MAE and StD of GNSS/IMU/Camera/HD Map integrated localization.

Item Lateral Error (m) Longitudinal Error (m) Yaw Error (degree)

MAE 0.041 0.701 0.899
StD 0.086 1.827 0.669

For our system, the mean lateral localization error is 0.041 m, with a StD of 0.701 m.
According to Table 4, 99% of the positioning errors are less than 0.299 m laterally and
7.111 m longitudinally. The experimental results demonstrate that our system achieves
high accuracy in lateral localization. The StD of 0.701 m and the MAE value of 0.299 m
for 99% of lateral errors indicate that correct lane identification can always be maintained
using our system. In the longitudinal direction, the MAE is 0.701 m with a StD of 1.827 m,
which is generally satisfactory in most cases. However, some exceptionally large errors
occur in longitudinal localization, indicating a need for further optimization.

Table 4. MAE within different percentiles (GNSS/IMU/Camera/HD Map integrated localization).

Percentile Lateral MAE (m) Longitudinal MAE (m) Yaw MAE (Degree)

50% 0.051 0.454 0.890
75% 0.078 1.452 1.028
80% 0.087 2.039 1.072
85% 0.103 2.671 1.132
90% 0.138 3.251 1.233
95% 0.203 4.869 1.474
99% 0.299 7.111 3.758

Table 5. MAE and StD of GNSS/IMU integrated localization.

Item Lateral Error (m) Longitudinal Error (m) Yaw Error (Degree)

MAE 4.638 16.546 2.960
StD 20.851 59.208 0.575

Table 6. MAE within different percentiles (GNSS/IMU integrated localization).

Percentile Lateral MAE (m) Longitudinal MAE (m) Yaw MAE (Degree)
50% 0.152 1.227 2.882
75% 3.845 33.454 3.273
80% 6.466 51.796 3.378
85% 10.806 70.849 3.486
90% 19.039 98.656 3.660
95% 45.293 152.676 4.207
99% 126.262 231.995 4.774
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To demonstrate the advantages of the localization method proposed in this paper, par-
ticularly the performance of vision and HD map matching, we conducted additional
comparative experiments using only a GNSS and an IMU. The results are shown in
Tables 5 and 6. The lateral MAE is 4.638 m, and the longitudinal MAE is 16.546 m, which
are significantly greater than those of our system, demonstrating our superiority. Accord-
ing to Table 6, only 50% of lateral localization errors are less than 0.152 m, indicating that
correct lane identification cannot be guaranteed most of the time. The 99th percentile MAE
is 126.262 m laterally and 231.995 m error longitudinally, showing that GNSS and IMU
integration is insufficient for handling challenging continuous tunnel scenarios.

6. Conclusions

In this paper, we propose a GNSS/IMU/camera/HD map fusion localization solution
for AVs. In this system, an improved real-time semantic segmentation model based on
BiSeNet is used to extract the lane lines from the images captured by the camera in real time;
then, these lane lines are modeled through cubic polynomials and matched with the lane
lines acquired from the HD map using electronic horizon technologies. The pose correction
is obtained by the optimal matching using the LM algorithm. Finally, utilizing the CTRA
motion model and an EKF, the multi-source information from the GNSS, IMU, camera,
wheel odometry, and HD maps are fused to achieve high-performance localization in
challenging urban tunnel scenarios. The experimental results show that our system achieves
lane-level localization accuracy, with a lateral error of less than 0.29 m in continuous tunnel
scenarios most of the time, and the average accuracy in the longitudinal direction is 0.70 m.

In the future, matching between other visually recognized targets such as ground text,
arrows, symbols, traffic signs, traffic lights, and HD maps will be explored to improve the
accuracy in longitudinal direction. The positioning, navigation, and timing (PNT) infor-
mation provided by “5G + BDS/GNSS” will be explored as lower latency can effectively
improve positioning accuracy [50]. Additionally, further comparisons with other related
studies will be conducted.
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